Question		Marks	Guidance Notes
1 (a (i)	single celled/unicellular ; no (true) nucleus / no nuclear membrane ; loop of DNA ; no, (membrane-bound) organelles ; e.g. no mitochondria / chloroplasts (peptidoglycan/murein) cell wall ; reproduce by binary fission ; small(er) /70S, ribosomes ; plasmids ;	[max 2]	I DNA strand unqualified \mathbf{A} naked DNA I flagella, capsule, pili, cilia \mathbf{R} cellulose cell wall
(ii)	swim / movement / AW ;	[1]	
(b)	harmless/attenuated/dead/AW, form of, (named) pathogen/antigen used ; (vaccine) injected/swallowed ; ref to specific/unique/AW, antigen ; lymphocytes make antibodies; ref to memory cells; ref to active immunity ; rapid, immune response/AW, if exposure to same pathogen ; herd immunity ; AVP ; e.g. detail of active immunity/smallpox became extinct	[max 4]	A long term immunity
(c) (i)	$\begin{aligned} & 12-0.4 \text {; } \\ & \text { 11.6, au /arbitrary units ; } \end{aligned}$	[2]	
(ii)	large/rapid/immediate increases; peaks at, $\underline{50} \mathrm{~s} / \underline{12 \mathrm{AU} \text {; }}$ then decrease to, around $5-4.6 \mathrm{AU} /$ by $125-150 \mathrm{~s}$; fluctuates/stays (fairly) constant, between $125-150$ s and 250 s $/ 4.4$ and $4.8 \pm 0.2 \mathrm{AU}$;	[max 3]	I comparisons to 'without toxins' on graph A increases and decreases from 50 s

Question		Marks	Guidance Notes
(iii)	active transport; (through) protein (molecules/gates/pumps/AW) ; (protein) in cell membrane ; using, energy/ATP (from respiration) ; (movement) against a concentration gradient/AW ;	[max 3]	
(d) (i)	(small) intestine ;	[1]	A large intestine/duodenum/jejunum/ileum /rectum/colon
(ii)	oral rehydration (therapy/salts/treatment/solution); drink mixture of, sugar/ nutrients and, salt/ions ; replace lost, water/fluids ; water must be, uncontaminated/boiled/sterilised/clean/AW ; antibiotics ;	[2]	A receive intravenous fluids I drink more water
		[Total: 18]	

Question	Answers	Marks	Additional Guidance
2 (a)	$\begin{aligned} & \text { E } \\ & \text { A } \\ & \text { B } \\ & \text { D } \\ & \text { C } \end{aligned}$	[max 3]	all 5 correct $=3$ marks $3 / 4$ correct $=2$ marks $1 / 2$ correct $=1$ mark
(b)	soft body ; not segmented ; mantle ; visceral mass ; (muscular) foot; ignore feet/legs produce slime/ have slimy body; A mucus radula/rasping tongue/AW ; hydrostatic skeleton ;	[max 2]	
		[Total: 5]	

Question	E Answers				Marks	Additional Guidance
3 (a (i)	go to 2				[max 3]	$\begin{aligned} & 5 / 6 \text { right }=3 \\ & 3 / 4 \text { right }=2 \\ & 1 / 2 \text { right }=1 \\ & 0 \text { right }=0 \end{aligned}$
		go to 5				
	Gymnopis multiplicata		B			
	go to 3					
	Triturus cristatus		C			
	go to 4					
	Necturus maculosus		D			
	Ambystoma tigrinum		G			
	go to 6					
	Oreophrynella quelchii		E			
	Polypedates leucomystax		F			
	Rana temporaria		A			
(b)	```habitat, destruction / change ; A examples of destruction, e.g. deforestation, soil erosion (named) pollution ; A global warming / climate change / acid rain (fungal) disease ; hunting (for pet trade / food); lack of food / starvation; ignore competition for food competition, with alien / introduced / exotic, species ; predation by introduced species; roadkill ; AVP;```				[max 3]	
				Tota	[6]	

Question				Marks	Additional Guidance
$4 \quad$ (a (i)	reptiles ;			[1]	
(ii)			;,;		$5 / 6$ right $=3$
	go to 2				$3 / 4$ right $=2$
	go to 3				$0 \text { right }=0$
	go to 4				
	Chalcides minutus	B			
	go to 5				
	go to 6				
	Brookesia perarmata	G			
	Calumma parsonii	C			
	Amblyrhynchus cristatus	A			
	Cyclura lewisi	E			
	Abronia graminea	F			
	Varanus komodoensis	D		[3]	

Question		Marks	Additional Guidance
$4 \quad$ (b)	encourages biodiversity ; ora prevents extinction ; encourages genetic diversity (within each species) ; maintain food, webs/chains ; food for predators ; increasing research/source of medicine ; AVP ;; e.g. maintain habitats for other organisms/ethical/moral/aesthetic reasons/tourism	max [3]	A species diversity A an example of feeding
(c) (i)	reduced genetic diversity ; identical offspring; negative traits passed on ; more competition for local resources; less chance of survival in a varying environment ; one disease could wipe out total population ; AVP ; e.g. less chance of evolving	max [2]	A no genetic diversity A unfavourable/bad traits.
(ii)	offspring may not be as well adapted to environment ; slower process/takes longer (than asexual reproduction) ; requires partner/ two parents ; less energy efficient/requires more energy/many eggs is wasteful ; AVP ;	\max [2]	A description e.g. good characteristics are not always passed on.
(d) (i)	reduction division/chromosome number is halved/one set of chromosomes; diploid to haploid ; for production of gametes; daughter cells are not genetically identical/genetically different ;	[2]	to each other or parent

Question		Marks	Additional Guidance
4	(ii)	for adaption to, new/changed environment; causes (genetic) variation; competition for survival ; best suited reproduce; allows natural selection; allows evolution; AVP;	ignore mutations unqualified.
		max [3]	
	Total: 16]		

5 (a)	1 antennae; 2 elongated bodies; 3 segmented body/many segments ; 4 many ($\geqslant 10$) legs; 5 (one or two pairs of) legs on each segment ; 6 exoskeleton ; 7 jointed legs ;	max [3]
(b)	1 length of antennae; 2 number of sections on antennae ; 3 presence/absence, of tail pieces/AW ; 4 length of tail pieces ; 5 length of legs; 6 number of leg joints ; 7 total number of legs; 8 position of legs on body ; 9 number of legs per segment; 10 size/shape of segments; 11 number of body segments ; 12 length of body; 13 head shape; 14 presence/absence 'spots/markings' ;	max [3]

(c) (i)	nucleus ;	[1]	Ignore chromosomes
$5 \quad$ (ii)	1 idea that animals are identified accurately ; R identify unqualified 2 barcoding is, cheap/easy/quick/efficient; 3 barcoding is useful if distinguishing characteristics/dichotomous key are difficult ; 4 identify previously unknown species ; 5 helps to identify, threatened/endangered species;	max [2]	
(iii)	1 ref to genes; 2 codes for (specific) proteins ; 3 stores genetic information ; 4 can be copied to pass on information to new cells ;	max [2]	
(d) (i)	1 all arrows point from food to feeder ; 2 millipedes eat dead leaves and fungi ; 3 food chain : bacteria \rightarrow nematodes \rightarrow springtails \rightarrow centipedes; 4 centipedes eat millipedes, springtails and earthworms ;	[4]	
	1 ref to, respiration/decomposition ; 2 release carbon dioxide; 3 carbon dioxide is taken in by, plants/photosynthesis ;	max [2]	
		[Total:17]	

